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* Learning by simulation is an educational approach that is widely adopted in Extraction Matching from Motion and Texturing

Multi-view Stereo (MVS)
medical practice including neo-natal reanimation training.

* Recent solutions employ Virtual Reality (VR) alongside with traditional

techniques to enrich the experience but it has two major shortcomings: Dense Correspondence Depth refinement

] , , Initialization Visibility Model . : . Other
1) the non-tangible side of the VR often bothers learners and requires a pre- and Depth Estimation and Fusion
Iearnmg phase and 2) the risk of motion sickness. high resolution images, patch-based plane estimation with heuristics + handcrafted :
Classical handcrafted stereo- . : : : requires no
e We work on a Mixed Reality (|V|R) system that solves VR-related problems assica known cameras, selir elleciion 4 handcrafted spatial and temporal propagation = geometric consistency e 67 W
dl Il si lati t ; d t .. techni MVS sparse point cloud, cometric briors (PatchMatch Stereol®], PlaneSweep Stereol’]) + checks + use of <amolin
and leverages all simuiation .ypc?s using moaern computer vision tecnniques depth range g P handcrafted similarity metrics surface normals pling
where Dense 3D Reconstruction is a key-component.
. . . . . . o . learned (patch-based) stereo and semantic residual learning or .
* DeeP Iearnmg solutlo.ns for Dense 3'? have_ hlgh clalms_ against analytlcal Learned ;IQEELEO:E:Z'JEL similar to classical features + fronto-parallel plane-sweeping + probability-based ;z?:;yant:ZEZ
methods, yet the gap In performance IS amblguous. To this end, we propose MVS Truth depth methods depth regression from temporal feature volumes filtering, no surface up-’sami)ling
a comparative study on challenging scenario of MR in medical scenes. (multi-class classification problem) normals

3 - THE COMPARATIVE STUDY

S Classical MVS | Learned MVS |

: WHAT IS BETTER?
I e 1 e I L Classical MVS Learned MVS

Q * Generally perform better but often more slow * Do not generalize well (require fine-tuning) and
_ due to more complex optimization schemes not necessarily faster

- |  Success is driven by careful choice of heuristics * Driven by pivotal ideas from classical methods but
Pixelwise view selection with geometric priors (resolution, triangulation i i Deep feature extraction + fronto-parallel warping w.r.t reference i and Several inOtaI ideaS not everything iS IearnEd (however’ it can be!)

. angle, incident angle) for reference (R) and three source views (1-3) and ! . camera + multi-depth cost map computation and recurrent

temporal smoothness term + examples of depth and normal maps | . regularization = classification problem with the cross-entropy loss ' ° Rely heaVily on Lambertian surface assumption * Semantic features relax some appearance
openmvs 2! deepmus 4 g but can handle slanted surface orientation constraints but still assume fronto-parallel scene
| i O — ) | * Provide more detailed reconstructions which * Often lack fine details due to reduced resolution
o | | iy *EEE m are favorable for Mixed Reality and other factors (e.g. view selection priors)
LY % H:fww ; | * Rarely limited by number of images, their size * Often restrained by GPU limits and require up-
g : Vapaffzs e I g 2 ! ) .
Ed Yvyy < . L) TR J ) Bz | or computational power sampling of the output
i Pixelwise patch-based plane estimation with minimal aggregated matching i i PatchMatch network for feature extraction on fronto-parallel planes ¢ Safe ChOice bUt difﬁCUIt to improve mOrE! * Have great POtential for improvement!
. cost where a support plane is represented in 3D + depth filtering with back-: | +semantic features + spatial and temporal feature aggregation + I
projection checks + depthmaps and back-projected 3D points | residual filtering = classification with the cross-entropy loss
Datasets acquisition Registered Accuracy Map
« different sensors (DSLR, iPhone) '\ U0 B

 6DoF motion, different N2 images
 1152x864 resolution

* sparse initialization via colmap !
Ground Truth

* high-precision laser scanner

* dense point cloud from mesh

* not always complete
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