
1 -  MOTIVATION AND OBJECTIVES 2 - DENSE 3D RECONSTRUCTION PIPELINE 

3 -  THE COMPARATIVE STUDY 

[1] Schönberger, J.L., et al. “Pixelwise view selection for unstructured multi-view stereo”. In European Conference on Computer Vision (2016). 
[2] Shen, S. “Accurate multiple view 3d reconstruction using patch-based stereo for large-scale scenes”. IEEE transactions on image processing (2013). 
[3] Yao, Y., et al. “Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference”.  In Int. Conf. on Computer Vision and Pattern Recognition (2019). 
[4] Huang, P.H., et al. “Deepmvs: Learning multi-view stereopsis”. In  Int. Conf. on Computer Vision and Pattern Recognition (2018). 
[5] Schops, T., et al. “A multi-view stereo benchmark with high-resolution images and multi-camera videos”. In  Int. Conf. on Computer Vision and Pattern Recognition (2017). 
[6] Bleyer, M., et al. “PatchMatch Stereo - stereo matching with slanted support windows”. In British Machine Vision Conference (2011).  
[7] Gallup, D., et al. “Real-time plane-sweeping stereo with multiple sweeping directions”. In  Int. Conf. on Computer Vision and Pattern Recognition (2007). 

Dense 3D Reconstruction for  
Mixed Reality in Medical Training: 
Classical methods vs Deep Learning 
Kristina PROKOPETC and Romain DUPONT  
LVML - Laboratory for Vision, Modeling and Localization, CEA List Paris-Saclay, France  

Completeness Map Full Reconstruction 

Accuracy Map Ground Truth RoI Registered NewBorn ReanimTable 

ToolStand ToolBox 

Datasets acquisition 
• different sensors (DSLR, iPhone) 
• 6DoF motion, different No images 

• 1152x864 resolution 
• sparse initialization via colmap [1]        

Ground Truth  
• high-precision laser scanner 
• dense point cloud from mesh 
• not always complete 

Evaluation as in ETH3D Benchmark [5] 

Accuracy : A fraction of the Reconstruction which is closer than 
2mm to the Ground Truth. 

Completeness : A fraction of the Ground Truth which is closer 
than 2mm to the Reconstruction. 

Runtime : All methods run on the computer with AMD CPU 
with 16 cores x32, 32GB RAM,  GeForce GTX 1080 ti 11Gb GPU 
 

*  partial execution on CPU and GPU  
** multithreaded CPU only   (20)  -  number of images in a dataset 
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• Learning by simulation is an educational approach that is widely adopted in 
medical practice including neo-natal reanimation training.  

• Recent solutions employ Virtual Reality (VR) alongside with traditional 
techniques to enrich the experience but it has two major shortcomings:  
1) the non-tangible side of the VR often bothers learners and requires a pre-
learning phase and  2) the risk of motion sickness. 

• We work on a Mixed Reality (MR) system that solves VR-related problems 
and leverages all simulation types using modern computer vision techniques 
where Dense 3D Reconstruction is a key-component. 

• Deep learning solutions for Dense 3D have high claims against analytical 
methods, yet the gap in performance is ambiguous. To this end, we propose 
a comparative study on challenging scenario of MR in medical scenes. 

VR Simulator 

Role playing with high-fidelity 
mannequin  

neo-natal reanimation training  

DATASETS AND EVALUATION PROTOCOL 

QUANTITATIVE RESULTS 

QUALITATIVE RESULTS 

Feature 
Extraction 

Feature 
Matching 

Structure  
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Image Sequence Camera Poses + Sparse Point Cloud 

Densification with  
Multi-view Stereo (MVS) 

Dense Point Cloud  

Surface Reconstruction  
and Texturing 

Complete 3D Model 

Initialization Visibility Model 
Dense Correspondence  
and Depth Estimation 

Depth refinement  
and Fusion  

Other 

Classical 
MVS 

high resolution images, 
known cameras, 

 sparse point cloud,  
depth range 

handcrafted stereo-
pair selection + 

geometric priors 

patch-based plane estimation with heuristics  + 
handcrafted spatial and temporal propagation 
(PatchMatch Stereo[6], PlaneSweep Stereo[7])  + 

handcrafted similarity metrics 

handcrafted  
geometric consistency 

checks + use of 
surface normals 

requires no 
training or up-

sampling 

Learned 
MVS 

similar to classical 
methods +  Ground 

Truth depth 

similar to classical 
methods 

learned (patch-based) stereo and semantic 
features + fronto-parallel plane-sweeping + 

depth regression from temporal feature volumes 
(multi-class classification problem) 

residual learning or 
probability-based 

filtering, no surface 
normals 

real+ synthetic 
data, may need 

up-sampling 
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Classical MVS 

• Generally perform better but often more slow 
due to more complex optimization schemes 

• Success is driven by careful choice of heuristics 
and several pivotal ideas 

• Rely heavily on Lambertian surface assumption 
but can handle slanted surface orientation 

• Provide more detailed reconstructions which 
are favorable for Mixed Reality 

• Rarely limited by number of images, their size 
or computational power 

• Safe choice but difficult to improve more! 

Learned MVS 

• Do not generalize well (require fine-tuning) and 
not necessarily faster 

• Driven by pivotal ideas from classical methods but 
not everything is learned (however, it can be!) 

• Semantic features relax some appearance 
constraints but still assume fronto-parallel scene 

• Often lack fine details due to reduced resolution 
and other factors (e.g. view selection priors) 

• Often restrained by GPU limits and require up-
sampling of the output 

• Have great potential for improvement! 

WHAT IS BETTER? 
r-mvsnet [3] 

Deep feature extraction + fronto-parallel warping w.r.t reference 
camera + multi-depth cost map computation and recurrent 
regularization = classification problem with the cross-entropy loss 

colmap [1]  

Pixelwise view selection with geometric priors (resolution , triangulation 
angle, incident angle)  for reference (R) and three source views (1-3) and 
temporal smoothness term + examples of depth and normal maps 

openmvs [2]  

Pixelwise patch-based plane estimation with minimal aggregated matching 
cost where a support plane is represented in 3D  + depth filtering with back-
projection checks + depthmaps and back-projected 3D points 

deepmvs [4] 

PatchMatch network for feature extraction on fronto-parallel planes 
+ semantic features + spatial and temporal feature aggregation + 
residual filtering = classification with the cross-entropy loss 

Classical MVS Learned MVS 


